Hygiena 2018, 63(3):76-83 | DOI: 10.21101/hygiena.a1700
Trans-epidermal absorption of polycyclic aromatic hydrocarbons
- 1 Univerzita Karlova, Lékařská fakulta v Hradci Králové, Ústav hygieny a preventivního lékařství, Hradec Králové, Česká republika
- 2 Univerzita Pardubice, Fakulta chemicko-technologická, Katedra biologických a biochemických věd, Pardubice, Česká republika
- 3 Univerzita Karlova, Lékařská fakulta v Hradci Králové, Ústav lékařské biofyziky, Hradec Králové, Česká republika
- 4 Univerzita Karlova, Lékařská fakulta v Hradci Králové, Ústav patologické fyziologie, Hradec Králové, Česká republika
- 5 Univerzita Karlova, Lékařská fakulta v Hradci Králové, Ústav lékařské biochemie, Hradec Králové, Česká republika
Polycyclic aromatic hydrocarbons (PAHs) are a group of significant contaminants in the occupational and living environment. In addition to the inhalation route of exposure in the occupational environment, there is also significant the dermal route of exposure. Existing experimental data on the intensity and rate of penetration of these substances into systemic circulation are still limited. The presented paper is focused on methodological and interpretative issues of trans-epidermal absorption of PAHs in vitro. In this study, we assessed the intensity (Flux) and rate (Lag time) of penetration of naphthalene, phenanthrene, pyrene and benzo[a]pyrene through the epidermal membrane derived from a pig ear. The experiment was performed using static vertical Franz diffusion cells (n = 32) and isopropyl myristate was used as a solvent. Flux (nmol/cm2/hour) reached 95.7 ± 45.5 in the case of naphthalene, 19.5 ± 8.7 of phenanthrene, 4.38 ± 1.98 of pyrene and 0.21 ± 0.08 of benzo[a]pyrene. Lag time (hour) was 0.26 ± 0.17 in the case of naphthalene, 2.12 ± 0.41 of phenanthrene, 3.25 ± 0.50 of pyrene and 11.2 ± 4.08 of benzo[a]pyrene. The Flux value decreased with the molecular weight of PAHs, while the Lag time increased with the molecular weight of PAHs. The amount of PAHs that penetrated through the epidermal membrane in a given time period ranged between 0.24% (benzo[a]pyrene) and 0.84% (phenanthrene) of the applied dose. The penetration of PAHs through the epidermal membrane showed a lower degree of data variability compared to full thickness skin experiments. The results suggest that the use of the epidermal membrane could define more accurately both the estimation of the internal dose of PAHs after dermal exposure and the estimation of the associated health risk within a conservative exposure scenario. However, experiments with using the epidermal membrane are time consuming and experimentally demanding, with no option of an objective control of the integrity of the epidermal membrane, which can lead to costly testing, loss of samples and, finally, an increase in the differences in data values obtained in different laboratories.
Keywords: polycyclic aromatic hydrocarbons (PAH) - dermal absorption, epidermal membrane, experiments
Published: September 30, 2018 Show citation
References
- IARC. IARC Monographs on the evaluation of Carcinogenic Risks to Human. Agents Classified by the IARC Monographs. Lyon: International Agency for Research on Cancer; 2014.
- Kotingová L, Voříšek V, Borská L, Čermáková E, Fiala Z. Vliv rozpouštědla na dermální absorpci pyrenu in vitro. Hygiena. 2012;57(2):50-5.
- Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016 Mar;25(1):107-23.
Go to original source...
- Qu C, Li B, Wu H, Wang S, Giesy JP. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ Geochem Health. 2015 Jun;37(3):587-601.
Go to original source...
Go to PubMed...
- VanRooij JG, Bodelier-Bade MM, Jongeneelen FJ. Estimation of individual dermal and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. Br J Ind Med. 1993 Jul;50(7):623-32.
Go to original source...
Go to PubMed...
- Walter D, Knecht U. Standardized investigation of percutaneous absorption of bitumen emission in humans. J Occup Environ Hyg. 2007;4 Suppl 1:144-53.
Go to original source...
- Horký D, Čech S. Mikroskopická anatomie. 2. vyd. Brno: Masarykova univerzita; 2011.
- Madison KC. Barrier function of the skin: "la raison d'etre" of the epidermis. J Invest Dermatol. 2003 Aug;121(2):231-41.
Go to original source...
Go to PubMed...
- Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol. 2014 Dec;88(12):2135-90.
Go to original source...
Go to PubMed...
- Cross SE, Roberts MS. Use of in vitro human skin membranes to model and predict the effect of changing blood flow on the flux and retention of topically applied solutes. J Pharm Sci. 2008 Aug;97(8):3442-50.
Go to original source...
Go to PubMed...
- Nishifuji K, Yoon JS. The stratum corneum: the rampart of the mammalian body. Vet Dermatol. 2013 Feb;24(1):60-72.e15-6.
Go to original source...
Go to PubMed...
- OECD. Guidance notes for the estimation of dermal absorption values. Paris: OECD Publishing; 2008.
- Frasch HF, Barbero AM, Alachkar H, McDougal JN. Skin penetration and lag times of neat and aqueous diethyl phthalate, 1,2-dichloroethane and naphthalene. Cutan Ocul Toxicol. 2007;26(2):147-60.
Go to original source...
Go to PubMed...
- Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, et al. Porcine ear skin: an in vitro model for human skin. Skin Res Technol. 2007 Feb;13(1):19-24.
Go to original source...
Go to PubMed...
- Förster M, Bolzinger MA, Fessi H, Briançon S. Topical delivery of cosmetics and drugs. Molecular aspects of percutaneous absorption and delivery. Eur J Dermatol. 2009 Jul-Aug;19(4):309-23.
Go to original source...
- Szura D, Ozimek Ł, Przybyło M, Karłowicz-Bodalska K, Jaźwińska-Tarnawska E, Wiela-Hojeńska A, et al. The impact of liposomes on transdermal permeation of naproxen-in vitro studies. Acta Pol Pharm. 2014 Jan-Feb;71(1):145-51.
Go to PubMed...
- Esposito E, Ravani L, Mariani P, Huang N, Boldrini P, Drechsler M, et al. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur J Pharm Biopharm. 2014 Feb;86(2):121-32.
Go to original source...
Go to PubMed...
- Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol. 1975 Mar;64(3):190-5.
Go to original source...
Go to PubMed...
- EFSA. Scientific opinion - Guidance on dermal absorption. EFSA Panel on Plant Protection Products and their Residues (PPR). EFSA J. 2012;10(4):2665.
Go to original source...
- Scientific Committee on Consumer Safety. Basic criteria for the in vitro assessment of dermal absorption of cosmetic ingredients [Internet]. Brussels: European Union; 2010 [cited 2018 Jun 29]. Available from: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_002.pdf.
- Bezrouk A, Fiala Z, Kotingová L, Krulichová IS, Kopečná M, Vávrová K. SAMPA: a free software tool for skin and membrane permeation data analysis. Toxicol in Vitro. 2017 Oct;44:361-71.
Go to original source...
Go to PubMed...
- Sartorelli P, Cenni A, Matteucci G, Montomoli L, Novelli MT, Palmi S. Dermal exposure assessment of polycyclic aromatic hydrocarbons: in vitro percutaneous penetration from lubricating oil. Int Arch Occup Environ Health. 1999 Nov;72(8):528-32.
Go to original source...
Go to PubMed...
- Sartorelli P, Montomoli L, Sisinni AG, Bussani R, Cavallo D, Foà V. Dermal exposure assessment of polycyclic aromatic hydrocarbons: in vitro percutaneous penetration from coal dust. Toxicol Ind Health. 2001 Feb;17(1):17-21.
Go to original source...
Go to PubMed...
- Payan JP, Lafontaine M, Simon P, Marquet F, Champmartin-Gendre C, Beydon D, et al. In vivo and in vitro percutaneous absorption of [14C]pyrene in Sprague Dawley male rats: skin reservoir effect and consequence on urinary 1-OH pyrene excretion. Arch Toxicol. 2008 Oct;82(10):739-47.
Go to original source...
Go to PubMed...
- EPA. In vitro dermal absorption rate testing of certain chemicals of interest to the occupational safety and health administration. Federal Registe. 2004 Apr;69(80):22402-41.
- Chilcott RP, Price S, editors. Principles and practice of skin toxikology. John Wiley & Sons; 2008.
Go to original source...
- Williams AC. Transdermal and topical drug delivery: from theory to clinical practice. London: Pharmaceutical Press; 2003.
- Kotingová L. Kinetika vybraných látek při dermální expozici (Polycyklické aromatické uhlovodíky) [disertační práce]. Hradec Králové: Univerzita Karlova; 2015.
- Sartorelli P, Aprea C, Cenni A, Novelli MT, Orsi D, Palmi S, et al. Prediction of percutaneous absorption from physicochemical data: a model based on data of in vitro experiments. Ann Occup Hyg. 1998 May;42(4):267-76.
Go to original source...
Go to PubMed...
- van de Sandt JJ, Meuling WJ, Elliott GR, Cnubben NH, Hakkert BC. Comparative in vitro-in vivo percutaneous absorption of the pesticide propoxur. Toxicol Sci. 2000 Nov;58(1):15-22.
Go to original source...
Go to PubMed...
- Kanikkannan N, Patel R, Jackson T, Shaik MS, Singh M. Percutaneous absorption and skin irritation of JP-8 (jet fuel). Toxicology. 2001 Mar 21;161(1-2):1-11.
Go to original source...
Go to PubMed...
- Chilcott RP, Jenner J, Hotchkiss SA, Rice P. In vitro skin absorption and decontamination of sulphur mustard: comparison of human and pig-ear skin. J Appl Toxicol. 2001 Jul-Aug;21(4):279-83.
Go to original source...
Go to PubMed...