Hygiena 2017, 62(3):85-89 | DOI: 10.21101/hygiena.a1520

New Trends in the Prevention of Biofilm Formation in HealthCare Premises

Iveta Danilová1, Irena Lovětinská-Šlamborová2
1 Technická univerzita v Liberci, Textilní fakulta, Liberec
2 Technická univerzita v Liberci, Fakulta zdravotnických studií, Liberec

Most bacteria exist as a cell community that adheres to living or inert surfaces. This fellowship is called a biofilm and it is often associated with health complications. Bacterial biofilm infections are especially problematic because the sessile bacteria resist the host's immune mechanisms, antibiotics and disinfectants. The review deals with the principle of biofilm formation and with aspects that affect this process. It tries to bring readers new trends in modern wound dressing, in the treatment of healthcare premises, water and invasive medical devices, which should lead to a minimization of biofilm formation and the incidence of health- care associated infections.

Keywords: bacterial biofilm, bacterial adhesion, nosocomial infection - prevention

Published: September 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Danilová I, Lovětinská-Šlamborová I. New Trends in the Prevention of Biofilm Formation in HealthCare Premises. Hygiena. 2017;62(3):85-89. doi: 10.21101/hygiena.a1520.
Download citation

References

  1. Vincent JL, Rello J, Marshall JC, et al; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009 Dec 2;302(21):2323-9. Go to original source... Go to PubMed...
  2. National Institutes of Health. Research on microbial biofilms [Internet]. Bethesda: NIH; 2002 [cited 2016 Feb 23]. Available from: http://grants.nih.gov/grants/guide/pa-files/PA-03-047.html.
  3. Phillips KS, Patwardhan D, Jayan G. Biofilms, medical devices, and antibiofilm technology: key messages from a recent public workshop. Am J Infect Control. 2015 Jan;43(1):2-3. Go to original source... Go to PubMed...
  4. Centres for Medicare and Medicaid Services [Internet]. Baltimore: Health and Human Services; 2014 [cited 2016 Feb 23]. Hospital-Acquired Conditions: (Present on Admission Indicator). Available from: https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/HospitalAcqCond/index.html?redirect=/HospitalAcqCond.
  5. An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998 Fall;43(3):338-48. Go to original source... Go to PubMed...
  6. Hancock V, Witsø IL, Klemm P. Biofilm formation as a function of adhesin, growth medium, substratum and strain type. Int J Med Microbiol. 2011 Nov;301(7):570-6. Go to original source... Go to PubMed...
  7. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002 Apr;15(2):167-93. Go to original source...
  8. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003 Nov;112(10):1466-77. Erratum in: J Clin Invest. 2007 Jan;117(1):278. Go to original source... Go to PubMed...
  9. Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces. 1999 Aug;14(1-4):105-19. Go to original source...
  10. Klemm P, Schembri MA. Bacterial adhesins: function and structure. Int J Med Microbiol. 2000 Mar;290(1):27-35. Go to original source... Go to PubMed...
  11. Vertes A, Hitchins V, Phillips KS. Analytical challenges of microbial biofilms on medical devices. Anal Chem. 2012 May 1;84(9):3858-66. Go to original source... Go to PubMed...
  12. Fu Y, Xie B, Ben D, Lv K, Zhu S, Lu W, et al. Pathogenic alteration in severe burn wounds. Burns. 2012 Feb;38(1):90-4. Go to original source... Go to PubMed...
  13. Guggenheim M, Zbinden R, Handschin AE, Gohritz A, Altintas MA, Giovanoli P. Changes in bacterial isolates from burn wounds and their antibiograms: a 20-year study (1986-2005). Burns. 2009 Jun;35(4):553-60. Go to original source... Go to PubMed...
  14. Yali G, Jing C, Chunjiang L, Cheng Z, Xiaoqiang L, Yizhi P. Comparison of pathogens and antibiotic resistance of burn patients in the burn ICU or in the common burn ward. Burns. 2014 May;40(3):402-7. Go to original source... Go to PubMed...
  15. Halstead FD, Rauf M, Bamford A, Wearn CM, Bishop JR, Burt R, et al. Antimicrobial dressings: comparison of the ability of a panel of dressings to prevent biofilm formation by key burn wound pathogens. Burns. 2015 Dec;41(8):1683-94. Go to original source... Go to PubMed...
  16. Cavanagh MH, Burrell RE, Nadworny PL. Evaluating antimicrobial efficacy of new commercially available silver dressings. Int Wound J. 2010 Oct;7(5):394-405. Go to original source... Go to PubMed...
  17. Gallant-Behm CL, Yin HQ, Liu S, Heggers JP, Langford RE, Olson ME, et al. Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy. Wound Repair Regen. 2005 Jul-Aug;13(4):412-21. Go to original source... Go to PubMed...
  18. Shao W, Liu H, Wu J, Wang S, Liu X, Huang M, et al. Preparation, antibacterial activity and pH-responsive release behavior of silver sulfadiazine loaded bacterial cellulose for wound dressing applications. J Taiwan Inst Chem Eng. 2016 Jun;63:404-10. Go to original source...
  19. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym. 2017 Jan 20;156:460-469. Go to original source... Go to PubMed...
  20. Desrousseaux C, Sautou V, Descamps S, Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect. 2013 Oct;85(2):87-93. Go to original source... Go to PubMed...
  21. Tenke P, Riedl CR, Jones GL, Williams GJ, Stickler D, Nagy E. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. Int J Antimicrob Agents. 2004 Mar;23 Suppl 1:S67-74. Go to original source... Go to PubMed...
  22. Han JB, Wang X, Wang N, Wei ZH, Yu GP, Zhou ZG, et al. Effect of plasma treatment on hydrophilic properties of TiO2 thin films. Surf Coat Technol. 2006 Apr;200(16-17):4876-8. Go to original source...
  23. Vasilev K, Sah V, Anselme K, Ndi C, Mateescu M, Dollmann B, et al. Tunable antibacterial coatings that support mammalian cell growth. Nano Lett. 2010 Jan;10(1):202-7. Go to original source... Go to PubMed...
  24. Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater. 2011 Feb 8;23(6):690-718. Go to original source... Go to PubMed...
  25. Blättler TM, Pasche S, Textor M, Griesser HJ. High salt stability and protein resistence of poly(L-lysine)- g -poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir. 2006 Jun 20;22(13):5760-9. Go to original source... Go to PubMed...
  26. Gon S, Kumar KN, Nüsslein K, Santore MM. How bacteria adhere to brushy PEG surfaces: clinging to flaws and compressing the brush. Macromolecules. 2012 Oct 23;45(20):8373-8381. Go to original source... Go to PubMed...
  27. Craigen B, Dashiff A, Kadouri DE. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J. 2011;5:21-31. Go to original source... Go to PubMed...
  28. Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, et al. Non eluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces. 2012 Sep 26;4(9):4708-16. Go to original source... Go to PubMed...
  29. Tetz GV, Artemenko NK, Tetz VV. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother. 2009 Mar;53(3):1204-9. Go to original source... Go to PubMed...
  30. El-Eskandrany MS, Al-Azmi A. Potential applications of cold sprayed Cu50Ti20Ni30 metallic glassy alloy powders for antibacterial protective coating in medical and food sectors. J Mech Behav Biomed Mater. 2016 Mar;56:183-94. Go to original source... Go to PubMed...
  31. Catalano PN, Pezzoni M, Costa C, Soler-Illia GJ, Bellino MG, Desimone MF. Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity. Microporous Mesoporous Mater. 2016 Dec 1;236:158-66. Go to original source...
  32. Tamayo L, Azócar M, Kogan M, Riveros A, Paéz M. Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1391-409. Go to original source... Go to PubMed...
  33. Šlamborová I, Zajícová V, Karpíšková J, Exnar P, Stibor I. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA. Mater Sci Eng C Mater Biol Appl. 2013 Jan 1;33(1):265-73. Go to original source... Go to PubMed...
  34. Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015 Apr;16:1-13. Go to original source... Go to PubMed...
  35. Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol J. 2013 Jan;8(1):97-109. Go to original source... Go to PubMed...
  36. Guidelines for drinking-water quality. 4th ed. Geneva: World Health Organization; 2011.
  37. Daels N, Radoicic M, Radetic M, De Clerck K, Van Hulle SW. Electrospun nanofibre membranes functionalised with TiO2 nanoparticles: evaluation of humic acid and bacterial removal from polluted water. Sep Purif Technol. 2015 Jul 27;149:488-94. Go to original source...