Hygiena 2012, 57(2):50-55

Influence of Solvent on Skin Absorption of Pyrene in Vitro

Lenka Kotingová1, Viktor Voříšek2, Lenka Borská3, Eva Čermáková4, Zdeněk Fiala1
1 Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové, Ústav hygieny a preventivního lékařství, Hradec Králové
2 Fakultní nemocnice Hradec Králové, Ústav klinické biochemie a diagnostiky, Hradec Králové
3 Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové, Ústav patologické fyziologie, Hradec Králové
4 Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové, Oddělení výpočetní techniky, Hradec Králové

Polycyclic aromatic hydrocarbons (PAHs) represent an important group of work and nonoccupational contaminants. Pyrene is one of the typical representatives of PAHs. In occupational exposure the inhaled amount of pyrene may be accompanied by a considerable transdermal intake. The presented in vitro experiment was focused on the influence of carrier medium/solvent (acetone or sunflower oil) on the basic characteristics of pyrene transfer through full pig ear skin, using diffusion Franz cells. Pyrene concentration in the donor phase was 0.00095 g pyrene/g solvent and 0.0095 g pyrene/g solvent. Pyrene concentration in the receptor fluid samples was determined by GC-MS. When using sunflower oil as a solvent, the absorptions of pyrene in the case of lower donor phase concentration were 0.04±0.06 nmol/cm2/24 h; 0.15±0.14 nmol/cm2/48 h and 0.50±0.58 nmol/cm2/72 h, flux 0.0088±0.0089 nmol/cm2/h and lag time 17.36±13.43 h. When using a donor phase with higher concentration of pyrene, the absorptions were 0.07±0.06 nmol/cm2/24 h; 0.34±0.25 nmol/cm2/48 h and 0.63±0.35 nmol/cm2/72 h, flux 0.0119±0.0063 nmol/cm2/h and lag time 18.09±10.54 h. When using acetone as the solvent, the absorptions of pyrene in the case of lower donor phase concentration were 0.02±0.05 nmol/cm2/12 h; 0.19±0.22 nmol/cm2/24 h; 0.55±0.59 nmol/cm2/48 h and 1.17±1.13 nmol/cm2/72 h, flux 0.0192±0.0181 nmol/cm2/h and lag time 15.38±10.04 h. When using higher donor phase concentration, the absorptions of pyrene were 0.02±0.02 nmol/cm2/12 h; 0.09±0.05 nmol/cm2/24 h; 0.39±0.36 nmol/cm2/48 h and 0.91±0.81 nmol/cm2/72 h, flux 0.0150±0.0139 nmol/cm2/h and lag time 13.16±6.37 h. The absorption of pyrene was in both donor phase concentrations higher in the case of using acetone solvent, but a statistically significant difference was only found after 12 and 24 hours of exposure at lower doses and after 12 hours of exposure at higher doses.

Keywords: exposure to polycyclic aromatic hydrocarbons (PAH), polycyclic aromatic hydrocarbons (PAH), dermal absorption, pyrene

Received: August 2011; Accepted: April 2, 2012; Published: June 1, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kotingová L, Voříšek V, Borská L, Čermáková E, Fiala Z. Influence of Solvent on Skin Absorption of Pyrene in Vitro. Hygiena. 2012;57(2):50-55.
Download citation

References

  1. Kortuem KR, Davis MD, Witman PM, McEvoy MT, Farmer SA. Results of Goeckerman treatment for psoriasis in children: a 21-year retrospective review. Pediatr Dermatol. 2010 Sep-Oct;27(5):518-24. Go to original source... Go to PubMed...
  2. International Agency for Reasearch on Cancer (IARC). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 92 [Internet]. Lyon: IARC; 2010 [cited 2010 Apr 16]. Available from: http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf.
  3. Borská L, Fiala Z, Krejsek J, Hamáková K, Andrýs C, Šmejkalová J, et al. Cytogenetic and immunological changes after dermal exposure to polycyclic aromatic hydrocarbons and UV radiation. Physiol Res. 2006;55(3):317-23. Go to original source...
  4. Fiala Z, Borská L, Pastorková A, Kremláček J, Černá M, Šmejkalová J, et al. Genotoxic effect of Goeckerman regimen of psoriasis. Arch Dermatol Res. 2006 Oct;298(5):243-51. Go to original source... Go to PubMed...
  5. Monteiro P, Gilot D, Le Ferrec E, Lecureur V, N'Diaye M, Le Vee M, et al. AhR- and c-maf-dependent induction of beta7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun. 2007 Jun 29;358(2):442-8. Go to original source... Go to PubMed...
  6. Ramos KS, Moorthy B. Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: implications for human atherogenesis. Drug Metab Rev. 2005;37(4):595-610. Go to original source... Go to PubMed...
  7. Armstrong B, Hutchinson E, Unwin J, Fletcher T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect. 2004 Jun;112(9):970-8. Go to original source... Go to PubMed...
  8. Burstyn I, Boffetta P, Heederik D, Partanen T, Kromhout H, Svane O, et al. Mortality from obstructive lung diseases and exposure to polycyclic aromatic hydrocarbons among asphalt workers. Am J Epidemiol. 2003 Sep 1;158(5):468-78. Go to original source... Go to PubMed...
  9. Anderson KE, Kadlubar FF, Kulldorff M, Harnack L, Gross M, Lang NP, et al. Dietary intake of heterocyclic amines and benzo(a)pyrene: associations with pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2005 Sep;14(9):2261-5. Go to original source... Go to PubMed...
  10. Sinha R, Kulldorff M, Gunter MJ, Strickland P, Rothman N. Dietary benzo[a]pyrene intake and risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2005 Aug;14(8):2030-4. Go to original source... Go to PubMed...
  11. Roos PH, Bolt HM. Cytochrome P450 interactions in human cancers: new aspects considering CYP1B1. Expert Opin Drug Metab Toxicol. 2005 Aug;1(2):187-202. Go to original source... Go to PubMed...
  12. Vondráček J, Kozubík A, Machala M. Modulation of estrogen receptor-dependent reporter construct activation and G0/ G1-S-phase transition by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells. Toxicol Sci. 2002 Dec;70(2):193-201. Go to original source... Go to PubMed...
  13. Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res. 2003 Mar 3;535(2):155-60. Go to original source... Go to PubMed...
  14. Hatch MC, Warburton D, Santella RM. Polycyclic aromatic hydrocarbon-DNA adducts in spontaneously aborted fetal tissue. Carcinogenesis. 1990 Sep;11(9):1673-5. Go to original source... Go to PubMed...
  15. Manchester DK, Bowman ED, Parker NB, Caporaso NE, Weston A. Determinants of polycyclic aromatic hydrocarbon-DNA adducts in human placenta. Cancer Res. 1992 Mar 15;52(6):1499-503. Erratum in: Cancer Res. 1992 Jul;52(13):3828.
  16. Koschier FJ. Toxicity of middle distillates from dermal exposure. Drug Chem Toxicol. 1999 Feb;22(1):155-64. Go to original source... Go to PubMed...
  17. Ritchie GD, Still KR, Alexander WK, Nordholm AF, Wilson CL, Rossi J 3rd, et al. A review of the neurotoxicity risk of selected hydrocarbon fuels. J Toxicol Environ Health B Crit Rev. 2001 Jul-Sep;4(3):223-312. Go to original source...
  18. Gallenga PE, Mastropasqua L, Lobefalo L, Morgante A, Ayed M. Polycyclic aromatic hydrocarbons in clear and cataractous human lenses. Doc Ophthalmol. 1994;85(3):243-5. Go to original source... Go to PubMed...
  19. Jongeneelen FJ. Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg. 2001 Jan;45(1):3-13. Go to original source... Go to PubMed...
  20. VanRooij JG, Bodelier-Bade MM, Jongeneelen FJ. Estimation of individual dermal and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. Br J Ind Med. 1993 Jul;50(7):623-32. Go to original source... Go to PubMed...
  21. Walter D, Knecht U. Standardized investigation of percutaneous absorption of bitumen emission in humans. J Occup Environ Hyg. 2007;4(S1):144-53. Go to original source...
  22. Ng KM, Chu I, Bronaugh RL, Franklin CA, Somers DA. Percutaneous absorption and metabolism of pyrene, benzo[a] pyrene, and di(2-ethylhexyl) phthalate: comparison of in vitro and in vivo results in the hairless guinea pig. Toxicol Appl Pharmacol. 1992 Aug;115(2):216-23. Go to original source... Go to PubMed...
  23. Sartorelli P, Aprea C, Cenni A, Novelli MT, Orsi D, Palmi S, et al. Prediction of percutaneous absorption from physicochemical data: a model based on data of in vitro experiments. Ann Occup Hyg. 1998 May;42(4):267-76. Go to original source... Go to PubMed...
  24. Sartorelli P, Cenni A, Matteucci G, Montomoli L, Novelli MT, Palmi S. Dermal exposure assessment of polycyclic aromatic hydrocarbons: in vitro percutaneous penetration from lubricating oil. Int Arch Occup Environ Health. 1999 Nov;72(8):528-32. Go to original source... Go to PubMed...
  25. Sartorelli P, Montomoli L, Sisinni AG, Bussani R, Cavallo D, Foà V. Dermal exposure assessment of polycyclic aromatic hydrocarbons: in vitro percutaneous penetration from coal dust. Toxicol Ind Health. 2001 Feb;17(1):17-21. Go to original source... Go to PubMed...
  26. Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol. 1975 Mar;64(3):190-5. Go to original source... Go to PubMed...
  27. Organization for Economic Co-operation and Development (OECD). OECD guidelines for the testing of chemicals, section 4 - Health effects. Test no. 428. Skin absorption: in vitro method [Internet]. Paris: OECD; 2004 [cited 2012 Apr 16]. Available from: http://www.oecd-ilibrary.org/environment/test-no-428-skin-absorption-in-vitro-method_9789264071087-en.
  28. EU-Scientific Committe for Consumer Products. Basic criteria for the in vitro assessment of dermal absorption of cosmetic ingredients. SCCP/0970/06 [Internet]. Brussels: European Commission; 2006 [cited 2012 Apr 16]. Available from: http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_s_03.pdf.
  29. Organization for Economic Co-operation and Development (OECD). Guidance document for the conduct of skin absorption studies [Internet]. OECD series on testing and assessment, no. 28. Paris: OECD; 2004 [cited 2012 Apr 16]. Available from: http://www.oecd-ilibrary.org/environment/guidance-document-for-the-conduct-of-skin-absorption-studies_9789264078796-en.
  30. Payan JP, Lafontaine M, Simon P, Marquet F, ChampmartinGendre C, Beydon D, et al. In vivo and in vitro percutaneous absorption of [14C]pyrene in Sprague Dawley male rats: skin reservoir effect and consequence on urinary 1-OH pyrene excretion. Arch Toxicol. 2008 Oct;82(10):739-47. Go to original source... Go to PubMed...
  31. Ministerstvo zdravotnictví ČR. Český lékopis 2009. Praha: Grada; 2009.
  32. Singh I, Sri P. Percutaneous penetration enhancement in transdermal drug delivery. Asian J Pharm. 2010;4:92-101. Go to original source...
  33. Tsai JC, Sheu HM, Hung PL, Cheng CL. Effect of barrier disruption by acetone treatment on the permeability of compounds with various lipophilicities: implications for the permeability of compromised skin. J Pharm Sci. 2001 Sep;90(9):1242-54. Go to original source... Go to PubMed...
  34. Rissmann R, Oudshoorn MH, Hennink WE, Ponec M, Bouwstra JA. Skin barrier disruption by acetone: observations in a hairless mouse skin model. Arch Dermatol Res. 2009 Sep;301(8):609-13. Go to original source... Go to PubMed...