Hygiena 2010, 55(4):117-123

Health Risk Assessment of Chemical Substances from Removing of Old Environmental Loads Using the Dispersion Model

Denisa Pelikánová1,2, Zdeněk Fiala1
1 Lékařská fakulta UK v Hradci Králové, Ústav hygieny a preventivního lékařství
2 EMPLA AG, spol. s r. o., Hradec Králové

The aim of the study was to build a two-dimensional view of potential health risk stratification associated with inhalation exposure of the population living in surroundings of a refinery-waste dump.

Methods: For that purpose there was used a combination of air pollutant concentrations and the dispersion model of substances in the environment. The monitoring of selected contaminants was realized in the place of old environmental loads and in the nearby residential area. The zones of concentrations were modeled by using an air dispersion program. Subsequently, the concentrations were converted by the PC program into a two-dimensional projection of the health risk zones. The risk was characterized using the hazard quotient (HQ) for substances with noncarcinogenic effect, and the individual lifetime cancer risk (ILCR) for carcinogens.

Results: The contaminants monitored included sulphur dioxide (air concentrations in a populated locality 0.01-24 μg.m-3), toluene (0.004-3 ng.m-3), hydrogen sulphide (0.006-0.1 ng.m-3) and 16 representatives of PAHs (Toxic Equivalent (TEQ) of benzo(a)pyrene: 0.1-4 pg.m-3). "SYMOS'97" and "Surfer 32" were used as the basic computer tools for two-dimensional risk modeling. The highest value of contribution of toxic risk were found in sulphur dioxide (HQ=0.001-1.2). The values of the contribution of PAHs to the carcinogenic risk (ILCR), expressed as toxic equivalent (TEQ) benzo(a)pyrene, were in the range of 5.2.10-9 to 3.5.10-7.

Conclusions: The method of two-dimensional health risk stratification renders the situation more clear in the estimate of risk to the exposed population and eases the steps to be taken in regulating that risk. In the case of the refinery-waste dump assessed, there has not been found any increased risk of toxic effects in the exposed population, and there has been found an acceptable risk of carcinogenic effects.

Keywords: health risk assessment, old environmental loads, petroleum waste, refinery, inhalation exposure, dispersion model

Received: July 2010; Accepted: September 16, 2010; Published: December 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pelikánová D, Fiala Z. Health Risk Assessment of Chemical Substances from Removing of Old Environmental Loads Using the Dispersion Model. Hygiena. 2010;55(4):117-123.
Download citation

References

  1. Aguilera F, Méndez J, Pásaro E, Laffon B. Review on the effects of exposure to spilled oils on human health. J Appl Toxicol. 2010 May;30(4):291-301. Go to original source... Go to PubMed...
  2. ATSDR. Minimal risk levels (MRLs) for hazardous substances [Internet]. Atlanta: Agency for Toxic Substances and Disease Registry; 2008 [cited 2010 Feb 21]. Available from: http://www.atsdr.cdc.gov/mrls/mrls_list.html.3.
  3. Bubník J, Keder J, Macoun J, Maňák J. SYMOS'97: systém modelování stacionárních zdrojů. Metodická příručka. Praha: Český hydrometeorologický ústav; 1998.
  4. Ekologické laboratoře EMPLA. Stanovení oxidu siřičitého (SOP VZ 11). Stanovení sirovodíku (SOP PP4). Stanovení polycyklických aromatických uhlovodíků (SOP PP6). Stanovení těkavých organických sloučenin (SOP E 1). In: Příručka jakosti. Hradec Králové: EMPLA AG; 2002.
  5. Hammer V. Dokumentace posouzení vlivu záměru na životní prostředí. Nápravná opatření - Laguny Ostramo [online]. Praha: Ecosystem; 2007 [cit. 2010-02-21]. Dostupný z: http://tomcat.cenia.cz/eia/detail.jsp?view=eia_cr&id=MZP115.
  6. Janjua NZ, Kasi PM, Nawaz H, Farooqui SZ, Khuwaja UB, Najam-ul-Hassan, et al. Acute health effects of the Tasman Spirit oil spill on residents of Karachi, Pakistan. BMC Public Health. 2006 Apr 3;6:84. Go to original source...
  7. MŽP ČR. Metodický pokyn odboru ekologických rizik a monitoringu k hodnocení rizik č. j. 1138/OER/94. Věstník MŽP ČR. 1996;6(2):16-18, 22-35.
  8. MŽP ČR. Dodatek č. 1 k Metodickému pokynu odboru ochrany ovzduší MŽP k výpočtu znečištění ovzduší z bodových a mobilních zdrojů "SYMOS'97" publikovanému ve Věstníku MŽP, částce 3, ročník 1998 dne 15.4.1998. Věstník MŽP. 2003;13(4):1-6.
  9. MŽP ČR. Metodický pokyn č. 12 pro analýzu rizik kontaminovaného území. Věstník MŽP ČR. 2005;15(9):1-41.
  10. MŽP ČR. Systém evidence kontaminovaných míst [online]. Praha: Ministerstvo životního prostředí ČR; 2008 [cit. 2010-02-21]. Dostupné z: http://mestra.cenia.cz/sez/default2.asp?klic=6815002&tab=zatez.
  11. Nařízení vlády č. 597 ze dne 12. prosince 2006 o sledování a vyhodnocování kvality ovzduší. Sbírka zákonů ČR. 2006;částka 188:7945-58.
  12. Pérez-Cadahía B, Laffon B, Valdiglesias V, Pásaro E, Méndez J. Cytogenetic effects induced by Prestige oil on human populations: the role of polymorphisms in genes involved in metabolism and DNA repair. Mutat Res. 2008 May 31;653(1-2):117-23. Go to original source... Go to PubMed...
  13. Pérez-Cadahía B, Laffon B, Pásaro E, Méndez J. Genetic damage induced by accidental environmental pollutants. ScientificWorldJournal. 2006 Sep 25;6:1221-37. Go to original source... Go to PubMed...
  14. Státní zdravotní ústav. Referenční koncentrace vydané SZÚ (v μg/m3) - (podle § 45 zákona č. 86/2002 O ochraně ovzduší z
  15. 4. 2003), ve znění následných právních úprav (472/2005 Sb.) [online]. Praha: SZÚ; 2003 [cit. 2010-02-21]. Dostupný z: http://www.szu.cz/uploads/documents/chzp/ovzdusi/dokumenty_zdravi/refrencni_konc_2003.pdf.
  16. Tien AJ, Altman DJ, Worsztynowicz A, Zacharz K, Ulfig K, Manko T, et al. Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery - DOE's first demonstration project in Poland [Internet]. Proceedings Fourth International Symposium and exhibition on environmental contamination in Central and Eastern Europe; 1998 Sep 15-17; Warsaw. Tallahassee: Institute for International Cooperative Environmental Research at the Florida State University; 1999 [cited 2010 Feb 21]. Available from: http://esd.lbl.gov/files/about/staff/terryhazen/1999Tien_etal_Warsaw98009.PDF.
  17. US EPA. Hydrogen sulfide (CASRN 7783-06-4). Integrated risk information system [Internet]. Washington, DC: US EPA; 2003 [last update 2003 Jul; cited 2010 Feb 21]. Available from: http://www.epa.gov/ncea/iris/subst/0061.htm.
  18. US EPA. Toluene (CASRN 108-88-3). Integrated risk information system [Internet]. Washington, DC: US EPA; 2007 [last update 2007 Apr; cited 2010 Feb 21]. Available from: http://www.epa.gov/ncea/iris/subst/0118.htm.
  19. Wcislo E. Examples of health risk assessment applications for contaminated sites in the Upper Silesia, Poland [Internet]. NATO/CCMS Pilot study meeting. Prevention and remediation in selected industrial sectors; 2006 Jun 5-7; Athens, Greece [cited 2010 Feb 21]. Available from: http://www.clu-in.org/athens/download/Risk_Assessment/Poland-Eleonora_Wcislo.pdf.
  20. World Health Organization. Air quality guidelines for Europe. 2nd ed. WHO Regional Publications, European Series, No. 91. Copenhagen: WHO Regional Office for Europe; 2000.
  21. World Health Organization. Hydrogen sulfide: human health aspects. Concise international chemical assessment document 53 [Internet]. Geneva: WHO; 2003 [cited 2010 Sep 11]. Available from: http://www.inchem.org/documents/cicads/cicads/cicad53.htm.
  22. World Health Organization. Health risks of persistent organic pollutants from long-range transboundary air pollution. Copenhagen: WHO Regional Office for Europe, 2003.
  23. World Health Organization. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. Copenhagen: WHO Regional Office for Europe; 2006.